BRANCHING OF ROTATIONALLY SYMMFTRIC]"SOLUTIONS ,
DESCRIBING FLOWS OF A VISCOUS LIQUID
WITH A FREE SURFACE

V. V. Pukhnachev UDC 532.516

Equilibrium shapes of a liquid, situated on the outer or inner surface of a rigid cylinder and
rotating together with it as a solid body, are studied, We determine the principal part of the
solution of the equilibrium equation for small deviations of the determining parameter from
the critical value. The bifurcation of rotationally symmetric motions with a free boundary
in a body force field is also investigated.

1. Suppose that a viscous, incompressible, weightless, capillary liquid fills the space between two
neighboring cylindrical surfaces of radii r;{ and r, > r;. The inner surface is rigid and rotates about its
axis with an angular velocity Q. We introduce dimensionless parameters, choosing as scales of length,
velocity, and pressure the quantities r,, Qr,, pS221-22 {0 being the density of the liquid). We shall discuss
the motion in a cylindrical coordinate system r, 6, z, where r=0 is the common axis of the cylinders.

We assume that a rotational field of body forces [0, F(r), 0] acts on the liquid. Then the Navier—
Stokes equations have a steady solution in which the velocity field is [0, V(r), 0] and the pressure is

P(r)= — ——-———V:(S) ds+ P,

i R S

where P, is a constant. The function V(r) is uniquely determined as the solution of the boundary problem

a2V 4 av 1

dr? _J'_r dr __FVZ—F(r}
V=a for r=a, »Z—I{——LV:O for  r—1{
r r

(a =ry/r <<?).

At the same time the adhesion condition holds on the surface r =g, while the conditions of impene-
trability and lack of tangential stress hold on the surface r=1. Choosing P =", where B=pS22r23/o, o
being the surface tension coefficient, we can verify that at r =1 the normal stress is equal to the capillary
pressure., Thus the surface r=1 is a free surface.

Of physical interest is the case F=0, so that
V=r, P=(@2—1)/2+4 B
In this case the liquid and the cylinder rotate as one solid body.

We shall call the motion of the liquid described above fundamental. Later we shall look for rotation-
ally symmetric motions that branch off from the fundamental motion. We seek velocity and pressure fields
of the form

Vi=(u, V+ovw), p =P -+ R7p (R = Qr,? ] v),

where R is the Reynolds number, The functions u, v, w, p depend only on r, z, Insertion of vl p1 into the
Navier—Stokes equations results in the following system, involving v=(u, v, w) and p:
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Au — r%g — p, + 2Rov = R (uu, + wu, — r-1?)
Av —r=%y — Rgu = R (uv, + wv, + ruy)
Aw — p, = R (aw, + ww,) 1.1)
r(ra), +w, =0

Here the subscripts r, z denote corresponding partial derivatives and

14 av Vv

o(r) =, g§(r)=—- e
0 1 9 32
A=gm T 5o Tar

Let r=n(z) represent the equation of the free surface. It will be assumed that the motion is periodic
with period [ in the z-direction:

v z+D=v(,2, pr,z+ ) =pr 2, nc+D)=n(@ 1.2)
and that u, v, p, n are even functions of z, while w is odd:

u(r7z)=u(ry“‘z)y v(r,z)=v(r, _Z)a ﬂ(z)=’fl(—z)
pr,y=p(r, —2), w2 =—w( —I) (1.3)

On the rigid surface the adhesion condition holds:
u=v=w=0for r=a (1.4)

On the free boundary the normal velocity component and the tangential stress vanish, while the nor-
mal stress is equal to the capillary pressure. In terms of v, p, n this can be written

u—nw=0 foo r=n (1.5)

(1 - 7|2) (u; +wr) + 29 (ur—w,) = 0 for r= 1 (1.6)
(V4v),—r (V4 1) — i, =0 for ren '

. (1.7)

N k] _ 1 - P
B [!(1 +@)% o+ ] <P TR ) +
2 . .
m [, — 1 (w4 w,) + M2w,] for r=n 7
_ (M =dn/dz, i =d/dz) (1.8)
To these conditions we add a condition on the constancy of the volume of the liquid contained between
the planes z=0 and z={ in the fundamental and the perturbed motions

+

1
S(n2—1)dz=0 (1.9)
0
Equations (1.1) with the conditions (1.2)-(1.9) have the trivial solution v=0, p=0, n=1 (we recall that
V' (1)—V(1) =0, P(1) =B "Y). We shallfind solutions of the problem (1.1)-(1.9) that branch off from the trivial
solution for some values of the parameters 8, R.

2. In this and the following sections it is assumed that ¥=0, V=r, while w=1, g=2. We shall show
that then v=0, p=const in the solution of the problem (1.1)-(1.9).

We multiply the first of Egs. (1.1) by u, the second by v, and the third by w. We then integrate these
vequalities over the range 0<z <, a<r<n and add the results. Both parts of the relationship obtained are
integrated by parts with the use of the equation of continuity and conditions (1.2)-(1.7). We find

7 (2)
> g W 1
(o § [urt & w2 (v -
0 a
__ From this and from (1.4) it follows that u=v=w=0. Equation (1.1) gives p =const; we denote this con-
stant by C.

L)+ ot + g et w e rar

r

Thus, if the fundamental solution is the rotation of the liquid as a solid body, then in the perturbed
motion the velocity field remains as it was, while only the free surface is perturbed. This fact was noted
by Chia-Shun Yih [1], who has studied the stability of a liquid film on the surface of a rotating cylinder in a
linear approximation, The branching problem reduces to the search for a function n and a constant C for
which the following equation is satisfied

2.1)

i . . -
arr varar TiET et =0+ =0,
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along with condition (1.9) and the condition that n be a periodic even function.

The problem we have formulated is a special case of a problem considered by L. A, Slobozhanin [2].
In this paper the branching problem we investigated by the Lyapunov—Schmidt method in the case where a
liquid is contained between parallel plates z=0 and z=]/2 and rotates together with them as a rigid body.
The equilibrium shape was not assumed to be axisymmetric ahead of time. The plane analogue of this prob-
lem was considered earlier by Yu. K. Bratukhin and L. N. Maurin [3].

By use of a method suggested in [2], the problem (2.1), (1.9} is reduced to an integrodifferential equa-
tion for n. To achieve this one must eliminate the constant C, integrate (2.1) from 0 to I, and make use of
(1.9). As the result of this we obtain

. !
L 1 Bppy o L0 (2.2)
(SRR ‘" . S (1 + %
Equation (2.2), linearized near 1 =1, has the form
{
i—}—x—-—%——Sxdz-{—Bx:O (2.3)
J ,

Uniting the conditions
2+ ) =2z, z(@) ==z(—2)
with (2.3) we obtain a linear problem for the eigenvalues. Its eigenvalues are
Po=0,B, =02 —1 for k=1, 2,..(a=2n),
and the eigenfunctions are as follows:
zg =1, z; = cosakz for &k >1

Each proper number is simple and, according to a theorem by M. A. Krasnocel'skii [4], there is a
bifurcation point of Eq. (2.2). Keeping in mind that the parameter 8=pQ 21"23/0 must be positive to have
physical meaning, we write the branching condition in the form

pQry2 o= 2k /IR —1, 2mk[>1 (E=1,2..). (2.4)
We note that the branching condition does not depend on the Reynolds number, This fact was men-
tioned in [1].

To find the principal parts of solutions of Eq. (2.2) that branch from n =1 we use the Lyapunov—
Schmidt method. Following [2], we can show that near 1 =1 real solutions of Eq. (2.2) exist only for < Bxk.
(A similar deduction was made in [3],) Moreover, we shall restrict our search to solutions branching for
the smallest bifurcation value; 8=8;=a?—1; o> 1 so that 8, > 0. Putting p’=0’—1—4, we seek a solution of
the form

n=1+un + p¥, -+ @y + ...

(The convergence of this series follows from results of [2].) The functions 1y, n,, Ny satisfy the equations
11

. . 18
il + 2y — -\ mdz = 0 (2.5)
b
: :
o 1 23 1 . 1 1 .
"]z-l‘dz'flz—TSnzdz = =2 5 7112—77]12—?‘7“% (—ﬂf—%——z-ﬂf) dz (2.6)
o b
-
ﬁ3+°‘2'ﬂs——l"\_nadz~:711‘(7'2_3)711712*1'11f]2‘7]13
H .
!
3oz —1 P | . .. 1 .
- 12 7]LTI121‘—TS( —2n1n2+n1q2+n13———2—-n1n1*>dz 2.7)

0

Equations (2.5) and (2.6) are solved sequentially and give
T = qeosaz, M= —1/¢%+ ¢* cosaz —/,0%x7% cos 2uz

where q, q' are undetermined coefficients. The constant g is found from the condition that Eq. (2.7) be
solvable in the class of I -periodic functions. Its value is
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g = 2737 (a8 — ot 4 322 - 1) ‘ (2.8)

(we discard the second value of q because the corresponding solution of Eq. (2.2) is obtained from the solu-
tion at hand by replacing z with z +1/2.) The constant q' is found from the solvability condition on the equa-~
tion for n,, which will not be given, It is found that q!=0. Thus the principal part of the solution of (2.2)
for small u = (@*—1~pB)/? is represented in the form

1M=1 -+ pgcosaz — p2¢*(/, + /272 cos 2az) 4 O (u°) (2.9)
where q () is given by Eq. (2.8).

3. The branching condition (2.4), as well as the shape of the perturbed surface, does not depend on
the parameter a,the dimensionless radius ofthe rigid cylinder. (It isassumedthat y is so smallthat min 5 >a.)
The solution of the problem on the axisymmetric equilibrium shapes of a rotating liquid that branch from a
circular cylinder does not change when the inner body has an arbitrary shape, so long as it is contained in
the cylinder r=ga <1, In particular, the rigid body can be absent altogether. Moreover, the above consid-
erations remain in force if the equality V=r for the fundamental motion holds only for r in some neighbor-
hood of unity, If the wetting angle is equal to 7/2, the solution of the problem can be combined with the con-
ditions for adherence on planes z =0 and z =kl/2 that rotate together with the cylinder; we have a problem
similar to that considered in [2].

It has already been pointed out above that the branching condition (2.4) does not depend on the Rey-~
nolds number, Thus nonuniqueness in the equilibrium shape of a rotating liquid appears for arbitrarily
small Reynolds numbers, The origin of this effect is the presence of the free surface. It is well known
that at small Reynolds numbers the steady motion of a viscous liquid, bounded by rigid walls, is unique.
The nonuniqueness of a motion with a free boundary, described above, is essentially of a geometrical na-
ture; it is connected with the onset of "deflection” of the minimal surface in the centrifugal force field,
given by Eq. (2.1). This deformation of the surface is not isometrie, but it conserves volume, »

In the perturbed and the fundamental motions the pressure differs by the constant C=C (); C — 0 for
¢ —0. By subjecting the solution to the additional condition C (u)= 0 we obtain a relationship between o=
2r/1 and p. The relationship C=0,(2.1), and (1.9) lead to the equality

!
g i+
Inserting expression (2.9) into this equality, we find that a=v3+O(u) for u—0,

It is stated in [2] that for small u branching equilibrium shapes are unstable. Results of [3] indicate
the existence of equilibrium shapes that are remote from the trivial one (for the plane problem).

If, with increasing u, the condition that the free boundary should not intersect the surface of the cy-
linder is violated, min n=a, thenthe solution of Eq. (2.2) loses physical meaning. Inthis case, however, one
can look for nontrivial equilibrium shapes of the rotating liquid with unconnected free boundaries.
Finding them involves the determination of a piecewise~smooth function n(z) which satisfies Eq. (2.2) only
in the interval |z]<b (0<h<1/2), while for b<z <1/2, —] /2<z<—D one has n=q., First of all the function
7 is assumed to be [ -periodic, even, and such that condition (1.9) is satisfied. At points where the free
boundary touches the rigid surface the conditions ‘

N(Eb=a " (£b=TFtgy

are satisfied, where y € (0, ) is a prescribed wetting angle. The parameter b is determined during the
course of solution. A solution of the problem just formulated exists if the quantities (1—a)/1 and y are
sufficiently small.

We shall now consider the problem on the equilibrium shapes of a liquid situated on the inner surface
of a hollow cylinder and rotating with it as a solid body, This problem reduces to Eq. (2.2), in which the
parameter B must be replaced by —f. The bifurcation values of B aregiven by the formula g =1~—o%? k=1
being an integer. As 8> 0, there are a finite number of them for any fixed value of w<1. A pair of equi-
librium shapes branches from each value Bi that is less than B. This conclusion is somewhat unex-
pected, as it runs contrary to a priori notions concerning the stabilizing role of centrifugal force in the
motion under consideration,

4, We shall nowdiscuss the branching problem (1.1)-(1.9) in the case V# r,
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We denote by C;/m*X the subspace of I-periodic even functions of the Holder space C™ *A (=, w),
m=0 being an integer, and 0<A<1, Let n(z) EC%"'}‘ and min 1 >a. For flxed 7 and V(r) € C¥x [a, max 1] we
consider the following auxiliary problem: to find in the interval . %t = {r, z: a<r<{7n(z), — o0 <z<C o0}
a solution v(r, z), p(r, z) of the system (1.1) that satisfies conditions (1.2)-(1.7). In what follows Cy, Cy, C,
denote positive constantsand | v | 2},1,' 19Yp |», | n — 1] s denote Holder norms of the corresponding functions,
calculated over their domains of definition. The following proposition, stated without proof, is valid,

Proposition 4.1. Let |n — 1| ;.. <Ce, where £> 0 is sufficiently small, and for a<r<1+e let one of
the following conditions hold:

o) =—>0, g{r)=-3-+— >0 . (4.1)
(4.2)

where C, depends only on [, @, €. Then the solution of the problem (1.1)-(1.7) exists uniquely (in the small)
and satisfies the inequality

(Vo + VP h<Ci(JE}In—1la+In—1n) &=v"@) (4.3)

The assertion concerning the uniqueness of the solution of problem (1.1)-(1.7) must be understood in
the following sense: the velocity vector v is determined unambiguously and the pressure p is determined
to within an additive constant. We put p=p,+C, where the function p, is determined unambiguously for a
given v by Eq. (1.1) and the condition

l 1 (z)
-Sdz S pordr=0
0 )

For simplicity it is further assumed that V" (1)=K=0. In this case the branching condition for the
problem (1.1)-(1.9) can be written explicitly.

We insert the solution v, p=p, +C of the auxiliary problem into the remaining condition on the free
surface (1.8). In the equality (1.8) we replace P(n) with P=g"1+am?—1)/2 +®, where s=VZ2(1) and ®(@n) =
Ofm —1)° for 7 —1; we assume that V(1) #0. We then transform the resulting relationship by eliminating
the constant C by condition (1.9), obtaining

ol

. I
S W B i o
N = — e T (R 1) S 0 — Somzndz—
(@ =30 )+ F By ) — o e () — 1 e (0) -2, )]+ 55 (1)) @)

The symbol ﬁr denotes an operator acting according to the rule: ﬁr[n (z)] =ur[n_ (z), z], where u(r, z) is de-
termined from the solution of the problem (1.1)-(1.7). The operators i, ..., Py are determined in a sim-~
ilar way.

We note that under the conditions of Proposition 4.1 we have from the inequality (4.3) and the defini-
tion of K=0 an estimate of @ of the form Q (1)

FOQM) hor <Co | —1 s 4.5)

Relationship (4.4) can be treated as an operator equation for the determination of the function 7 (z).
If 1 is a solution of (4.4), the constant-volume condition (1.9) is satisfied automatically. As a consequence
of the estimate (4.3) and conditions (1.2), (1.3), which the functions u, w, p satisfy, the operator N acts out
of C3+Xinto C1**, To demonstrate this we perform a Fréchet differentiation on the operator N in the
sphere .|n — 1] <<e. On the basis of (4.4), (4.5) its Fréchet derivative at the point n =1 has the form

!
£+x—-—li—\xdz+[istL(x)+Bsz
0

(4.6)

The operator L has the simple proper numbers Uy=0, Y = 1-ok? for k=1, 2,... . As p>1, there
exists an operator that is the inverse of L—1I, namely w0~ Ci +)‘—*C§’+ (is the identity operator).
From (4.4)-(4.6) and the definition of a Fréchet derivative it follows that

N+1=L+B8sz+ T (T@m=0(zf,fr z-0
With the notation x=7—1, we write Eq. (4.4) in the form
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L-—D@+TE=—01+B)z
and we apply the operator (L—I)"! to both sides of the equality, obtaining

g+ (L—D7T (@) = — (1 + ) (L — D (s) 4.7)

Here the operator (L—I)'1 is completely continuous in C; +7‘. The operator (L—I)"T is continuous
and admits of the estimate

L= DT (@) | =0 (2 i) for 20,

It follows from this that there exists a resolvent of the nonlinear operator (L—D~!T. In other words,
the equation x + (L—I)"'T (x) = 1,76 c%”‘ has a unique solution for any sufficiently small | 7] 3+ in some sphere
Jz |3 << 8,0<8<Ce. We represent this solution in the form z = #f, where # is a continuous operator
in C%”‘. Moreover, # = I + S, while |S(f)| 3.42=0 (| f] §+) where f —0. This enables us to write Eq.
(4.7) in the equivalent form v

r=— U+ P L—D @+ SEL—D @ =— 1+ ps) 4 () (4.8)

The operator A is completely continuous in the sphere |x| 3+3<0 and A(0)=0. Its Fréchet derivative
at zero is (L—I)~!, According to a theorem by M, A. Krasnosel'skii [4], each simple proper number Ak of
the operator (L—I)"! is a bifurcation point of Eq. (4.8). But between the proper numbers Ay of the operator
(L~I)"! and the simple proper numbers py of the operator L there is an obvious relationship: 1-+Ag=pg.
With the notation A =— (1 +pis) and the use of the expressions for the uy, we find the bifurcation values of
the parameters B : 8,=0, B =s"1%k®~1) k=1, 2,...).

For small x =1 —1 Eq.(4.8) is equivalent to problem (1.1)-(1.9). Taking the fact that the parameter 8
is positive into account, we write the branching condition for the solution of problem (1.1)-(1.9) in the form

Be=s2(a22—1), ok>1 (h—=1,2,..) (4.9)

Condition (4.9) is similar to the branching condition (2.4) and, like the latter, does not contain the
Reynolds number. However, a secondary flow that branches from the fundamental for =8k no longer
leads to a simple change in the shape of the free surface. It is qualitatively reminiscent of the Taylor
vortices that arise in the motion of a liquid between two rotating cylinders.

In the more general case, when V' (1) #0, but one of the conditions (4.1) or (4.2) is fulfilled, the con-
siderations leading to the demonstration of the existence of secondary flows remains as before. However,
the branching condition (depending on R) has a complicated form and is not given here.

The authors thank V, Kh, Izakson for his discussion of the work.

LITERATURE CITED

1. Chia~Shun Yih, "Instability of a rotating liquid film with a free surface,” Proc. Roy. Soc., Ser. A,
258, No. 1292 (1960).

2. L. A, Slobozhanin, "Branching of a cylindrical equilibrium state of a rotating liquid," in: Mathemati-
cal Physics, Functional Analysis [in Russian], No. 2, Kharkov (1971).

3. Yu. K. Bratukhin and L. N. Maurin, "Equilibrium shapes of a rotating liquid cylinder," Prikl. Matem,
i Mekh., 32, No. 4, (1968).

4, M. A. Krasnosel'sku Topological Methods in the Theory of Nonlinear Integral Equations [1n Russian],
Gostekhizdat, Moscow (1956).

258



